

Information Technology for the Twenty-First Century (IT²)

Information Technology for the 21st Century IT²

- Multi-agency presidential initiative
- Responds to findings of President's Information Technology Advisory Committee (PITAC)
- IT² increases Federal investments in:
 - Fundamental IT research
 - Advanced computing for science and engineering
 - Ethical, social, economic, and workforce implications of IT

IT²: Proposed FY2000 Budget

Agency	Fundamental Information Technology Research	Advanced Computing for Science, Engineering, and the Nation	Ethical, Legal, and Social Implications and Workforce Programs	Total
DOD	\$100M			\$100M
DOE	\$ 6M	\$ 62M	\$ 2M	\$ 70M
NASA	\$ 18M	\$ 19M	\$ 1M	\$ 38M
NIH	\$ 2M	\$ 2M	\$ 2M	\$ 6M
NOAA	\$ 2M	\$ 4M		\$ 6M
NSF	<u>\$100M</u>	<u>\$ 36M</u>	<u>\$ 10M</u>	<u>\$146M</u>
Total	\$228M	\$123M	\$ 15M	\$366M

Fundamental IT Research

- Long-term high-risk investigations of key issues in computer science and engineering
- Research focal points:
 - Software
 - Human computer interfaces and information management
 - Scalable information infrastructure
 - High-end computing

Fundamental IT Research Software

Highest IT R&D priority according to PITAC

- The demand for software exceeds our ability to produce it
- Today's software is fragile, unreliable, and difficult to design, test, maintain, and upgrade

- Software engineering
- End-user programming
- Component-based software development
- Active software
- Autonomous software
- High-assurance software

Fundamental IT Research Human Computer Interaction And Information Management

Research to improve the ways we interact with computers

- Computers are still too hard to use; surveys show that computer users waste over 12 percent of their time because they can't understand what their computers are doing
- Improved accessibility for people without a keyboard (for example, mobile professionals and doctors) and persons with disabilities
- Better techniques for locating data and extracting "knowledge" from data

- Computers that speak, listen, and understand human language
- Information visualization

Fundamental IT Research Scalable Information Infrastructure

Research to support the phenomenal growth of the Internet

- In 1985 the Internet connected 2,000 computers
- Today it connects over 37 million computers
- Future networks will connect at least a billion users and will be more complex – they will connect sensors, wireless modems, and embedded devices

- Deeply networked systems
- Anytime, anywhere connectivity
- Network modeling and simulation

Fundamental IT Research High-End Computing

Leading-edge research for future generations of computing to:

- Improve computational speed on applications
- Increase the efficiency of massively parallel systems, with a focus on systems software
- Develop technologies to enable future systems capable of a thousand trillion (10¹⁵) calculations per second

- Improved supercomputer performance and efficiency
- Creation of a computational grid
- Revolutionary computing

Advanced Computing For Science, Engineering, And The Nation

- IT² will obtain computers that are 100 to 1,000 times more powerful than those now available to the civilian research community, and make them available on a competitive basis
- Develop scientific and engineering simulation software and tools to make these computing systems useful research tools
- Establish and fund multidisciplinary teams working on most challenging problems

Economic And Social Implications Of It And It Workforce

- Increased research in economic and social impacts will:
 - Help in the design of information systems
 - Identify barriers to adopting IT and its applications
 - Provide more empirical data to policymakers
 - Encourage the solution of problems caused by IT
- Proposed efforts in training IT workers at U.S. universities:
 - Faculty access to modern curricula and instructional material
 - Graduate and post-graduate traineeships
 - University research grants through other components of this initiative will help support graduate students

IT² Management

Policy and coordination committee of agency heads

- Help establish and monitor goals
- Allocate research tasks
- Ensure tight Federal coordination
- Ensure open competitive allocation of funds

Working group reporting to the senior management team:

- Members appointed by principal agencies
- Coordinate research in all major IT² areas
- Ensure competitive selection processes are adopted

DoD Participation in IT²

DARPA	\$70M	Software for Autonomous Embedded SystemsDeeply Networked Systems
ARDA (Intell. community)	\$20M	 Part of \$43M start-up Secure Networks And Systems Information Management Of Analysis And Presentation
DDRE (DUSD [S&T])	\$10M	University Research Initiatives (URI)Young Investigator Awards

New DARPA Efforts Within IT²

Existing DARPA Efforts Of Relevance To IT²

Software For Autonomous Systems

Develop the missing software to enable pervasive employment of mobile autonomous robots

Program Goal

Autonomous: Several robots/person "unit commander"

Proposed Research

State-of-the-Art

Telesupervised: One robot/person "tank commander

State-of-the-Practice

Teleoperation: Several people/robot "tank driver"

Limitations

- Vulnerability of wireless communications
- Performance degradation due to limited sensory feedback

Software For Autonomous Systems

- Develop the missing software that will allow robots to perform on their own in the real world
 - Software-enabled control that leverages computational capacity and memory to enable new modes of operation
 - High level software needed for adaptable, capable, easy-to-use, autonomous mobile robots
 - Network-enabled software for coordination of large numbers of autonomous systems
 - Uniform evaluation criteria to evaluate (and hence facilitate) improvement of the robot's intelligence quotient

Examples

Countermine, Urban Operations, Search & Rescue, Firefighting

Leverage the phenomenal progress made in mechatronics and information sciences to instantiate this capability

Representative Activity

Mobile Autonomous Robot Software

The Problem?

- Robots must be adaptable, yet remain goal-directed and predictable.
- Sensors are noisy, so robots must accommodate imprecise / incorrect data.

Why now?

 Progress in mechatronics and learning.

How?

 Synthesize deliberative (symbolic) and reactive (sensor mediated) methodologies. Competing Approaches Differ wrt (Explicit) Programming / Learning Tradeoffs.

Soft Computing

Robot Shaping

Imitative Learning

Pre-programmed

Interactive Learning

Representative Activity Software For Distributed Robotics

Large Scale Results From Many Small Scale Robots

- Unmanned aircraft and small robots offer an opportunity to exploit economies of scale if one can get them to work cooperatively.
- However, the limitations imposed on these comparatively small, networked devices have significant implications for the software including:
 - highly coordinated control for many small scale robots to accomplish a large scale task
 - resource constraints preclude using conventional implementations of network protocols
 - resource constraints limit processing available on-board the robots

Software-Enabled Control

Today: Static control laws; small number of modes; clumsy transition

Future: Dynamic adaptation; many nano-modes; smooth transition

Software-Enabled Control

TODAY

FUTURE

- Old assumptions:
 - limited processing power
 - limited data storage
 - fixed-loop implementation

- New assumptions:
 - immense embedded processing power
 - multi-gigabit DRAM
 - · powerful real-time software

- Slow mode change
- Limited nodes/states
- Static, fixed-frequency
- Fixed sensing/actuator resources
- Closed control models

- **■** Fast, predictive mode change
- Nano-states
- Dynamic control scheduling
- Dynamic sensor & actuator allocation
- Open, composable control

Software-Enabled Control Dynamic Control Scheduling

Change from fixed-loop control to modifiable control schedules that permit sensing and actuation actions and frequency patterns to be changed dynamically.

- This also permits idling sensors and actuators to be reallocated to other control tasks. (e.g., sensor released during chattering actuation; or one actuator substituted for another).
- Control actions can be dynamically scheduled.
- Irregular patterns and interleaved cyclic frequencies become possible. This enables sequencing of control actions that occur at different rates or that occur sporadically.

Open control (sensing, actuation) schedule

Active State Models

... With Predictive Transition

Active State Models = State Data + Faster-Than-Realtime Prediction

Agent-Based Negotiation

Leverage mobile code (agents) to achieve autonomous negotiation of large scale, dynamic, distributed allocation problems.

- m targets/consumers (moving changing)
- n resources (moving changing)
- allocation good enough & soon enough
- (response faster than human time)

Software for Embedded Systems Representative Activity: Sensor Networks

- There are numerous sensor applications
 - Surveillance of remote areas
 - Perimeter defense
 - Global asset instrumentation
- However, software and networking technology to bridge the gap between sensors and useful systems is missing ...
 - How do you enable "multi-tasking" of nodes and the network as a whole?
 - How do you "query" a sensor network?
 - How does information "flow" to the right places? How is it fused?
- SensIT will develop reusable Information Technology for Networked Sensor Projects
 - Common software platform accelerates development
 - Powerful software algorithms

Tasking and Querying

Sample Approach: Information Gradients

Tasking and Querying

Sample Approach: Information Gradients

Scales Well To Multi-Sink / User Scenarios

Software for Embedded Systems Common Operating Environment

- Software interface to communications, software GPS, sensors, "nanocryptography"
- Software for managing information flow in irregular networks of embedded devices
- Dynamic reprogramming interface
- Power Control
 - Power budget is a first-class resource, driving activity schedule
 - Schedules wake-cycles and standby levels

Deeply Networked Systems

Where Has DARPA Focused?

Where Will The Processors Be?

Not Drawn to Scale

- Current Internet technology targets only 2% of all computers (PCs, servers, supers, etc.)
- The remaining 98% of computers are stranded within devices whose sensors and actuators are in direct contact with the physical world
- This project will extend the "depth" of the network to reach these embedded computational resources
- DARPA will conduct research on:
 - Multi-Modal Network Interfaces
 - Near Real-Time Networking
 - Agile Node & Network Services

